Sternaufbau und Sternentwicklung – Teil 1

Dipl.-Phys. Johannes Hölzl hoelzl@naa.net

Nürnberger Astronomische Arbeitsgemeinschaft e.V.

Grundkurs Astronomie
4. November 2024

Gliederung

- Physikalische Grundlagen
 - Elektromagnetisches Spektrum
 - Aufbau der Materie
 - Licht-Materie-Wechselwirkung
 - Spektroskopie
- Sternentstehung
 - Kollaps von Molekülwolken
 - Kernfusion
 - Frühe Entwicklung
 - Planetenentstehung und Exoplaneten

Wie können wir etwas über Sterne lernen?

Unsere wichtigste Untersuchungsmöglichkeit für Sterne: Licht



 $[\mathsf{Thomas}\ \mathsf{J\"{a}ger}/\mathsf{NAA}]$

- Was können wir aus dem Licht eines Sterns alles erfahren?
- Wie beeinflussen Zusammensetzung, Temperatur etc. das Licht eines Sterns?

Elektromagnetisches Spektrum I

- Farbe des Lichts $\widehat{=}$ Energie eines Photons $\widehat{=}$ Wellenlänge (im Vakuum)
- Astronomische Beobachtung findet nicht nur im sichtbaren Licht statt, sondern in nahezu allen Bereichen des elektromagnetischen Spektrums.

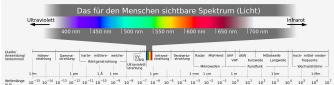
Das elektromagnetische Spektrum [Wikipedia]

Elektromagnetisches Spektrum II

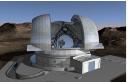
Zusammenhang Frequenz-Wellenlänge:

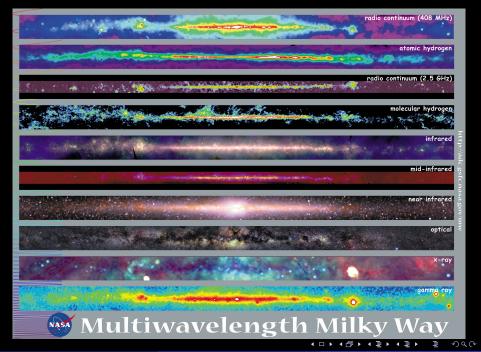
$$f \cdot \lambda = c$$

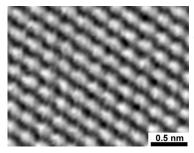
Lichtgeschwindigkeit $c \approx 299.792\,\mathrm{km/s}$, Frequenz f, Wellenlänge λ


Photonenenergie	hoch	niedrig
Frequenz	hoch	niedrig
Wellenlänge	kurz	lang
Farbe	blau	rot

Multiwellenlängenastronomie





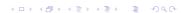


[ESO, NAOJ, NRAO, ESA, MPG]

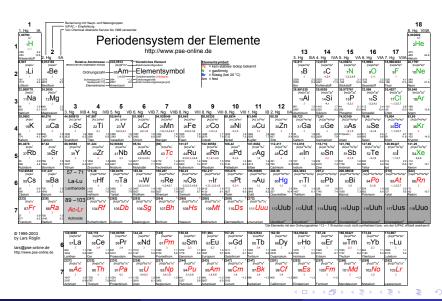
Aufbau der Materie

Grundbausteine der Materie: Atome

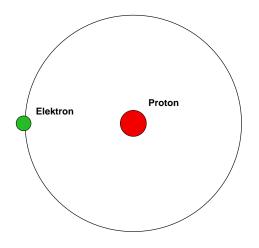
Aufbau der Atome:


- Atomkern
 - Protonen (positiv geladen)
 - Neutronen (elektrisch neutral)
- Elektronen (negativ geladen)

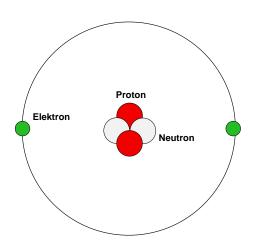
Atome


- Die chemischen Eigenschaften eines Atoms werden von der Anzahl der Protonen, der sogenannten Ordnungszahl Z, bestimmt.
- Die verschiedenen Atome bezeichnet man als Elemente
- Verbindungen mehrere Atome bezeichnet man als Moleküle
- Bohrsches Atommodell: Die Elektronen umkreisen den Atomkern auf diskreten Bahnen, nur bestimmte Abstände zum Atomkern sind möglich
- Jeder Bahn ist eine Energie *E* zugeordnet. Energiedifferenz zwischen zwei Bahnen *m* und *n*:

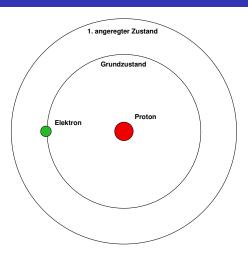
$$\Delta E = E_m - E_n$$


 Anzahl Elektronen = Anzahl Protonen ⇒ Atom ist elektrisch neutral

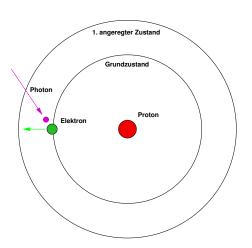
Periodensystem der Elemente



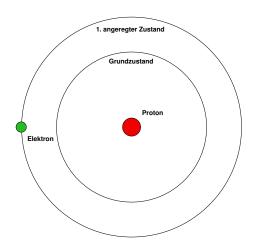
Wasserstoffatom


- Kürzel: H (Hydrogenium)
- Einfachstes Atom: 1 Proton, 1 Elektron
- Z = 1
- Häufigstes Element im Universum

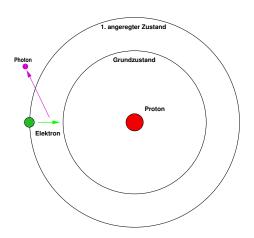
Heliumatom


- Kürzel: He (Helium)
- Kern von ⁴₂He: 2 Protonen, 2 Neutronen
- 2 Elektronen
- Z = 2
- Zweithäufigstes Element im Universum

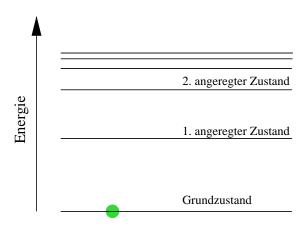
Absorption I


Normalerweise befinden sich die Elektronen im energetisch niedrigsten Niveau (es können sich bei Atomen mit mehrerer Elektronen aber maximal zwei Elektronen im Grundzustand befinden)

Absorption II


Photon mit der passenden Energie ΔE fällt ein: Photon wird absorbiert und das Elektron auf eine höhere Bahn gehoben: angeregter Zustand

Emission I


Der angeregte Zustand ist nicht stabil

Emission II

Elektron fällt nach kurzer Zeit wieder in Grundzustand \Rightarrow Emission eines Photons mit der Energie ΔE

Emission III

Abstand der Energieniveaus charakteristisch für jedes Atom bzw. Molekül

Simulation: https://astro.unl.edu/naap/hydrogen/animations/hydrogen_atom.html

Spektroskopie – Analyse des Lichts

Weißlichtzerlegung mit einem Prisma [Wikipedia]

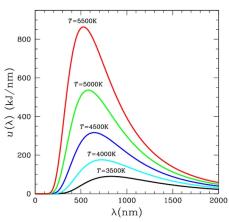
- Licht lässt sich durch Prismen oder Beugungsgitter in seine Wellenlängen ("Farben") zerlegen
- Verschiedene Elemente haben charakteristische Linien
- ⇒ aus den Spektren von Himmelsobjekten lässt sich deren Zusammensetzung bestimmen

Spektren

Kontinuierliches Spektrum

Absorptionsspektrum

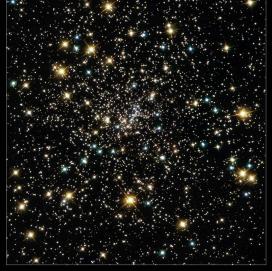
Emissionsspektrum



Sternspektren: Absorptionsspektren

Sonnenspektrum [N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF]

Plancksches Strahlungsgesetz



Spektrum eines schwarzen Körpers für verschiedene Temperaturen [Wikipedia]

- Strahlung eines "schwarzen Körpers" abhängig von Temperatur
- Höhere Temperatur ⇒
 Maximum liegt bei
 kurzwelligerer =
 energiereicherer Strahlung
- Bei Raumtemperatur: Maximum liegt im Infraroten

Einfache Möglichkeit zur Temperaturbestimmung: Bei welcher Wellenlänge (=Farbe) ist die Emission am stärksten?

Globular Cluster NGC 6397

Hubble Heritage

Spektralklassen I

Sterne mit ähnlichen Spektren werden in Spektralklassen unterteilt

Harvard-Klassifikation

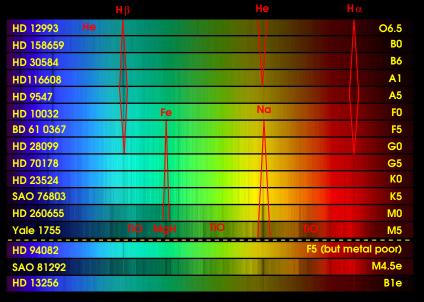
O - Oh

B – Be

A - A

F - Fine

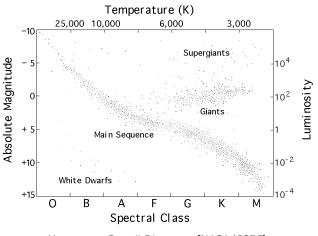
G - Girl/guy


K – Kiss

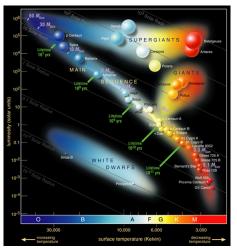
M - Me

C

Spektralklassen II


	Temperatur [K]	Kriterien
0	50.000	hochionisierte Atome
В	25.000	He I stark
Α	10.000	H maximal, ionisierte Metalle
F	7.600	ionisierte/neutrale Metalle, Ca II stark
G	6.000	neutrale Metalle, Ca II sehr stark
K	5.100	H schwach, neutrale Atomlinien
М	3.600	Neutrale Atomlinien, Moleküllinien
С	3.000	viel Kohlenstoff

Spektralklassen [NOAO]



Hertzsprung-Russell-Diagramm (HRD) I

 $Hertzsprung-Russell-Diagramm\ [NASA/GSFC]$

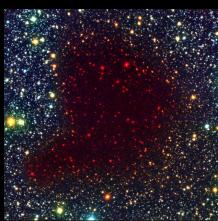
Hertzsprung-Russell-Diagramm (HRD) II

 $Hertzsprung-Russell-Diagramm\ [ESO]$

 $Simulation: \ http://astro.unl.edu/naap/hr/animations/hr.html$

Gliederung

- Physikalische Grundlagen
 - Elektromagnetisches Spektrum
 - Aufbau der Materie
 - Licht-Materie-Wechselwirkung
 - Spektroskopie
- Sternentstehung
 - Kollaps von Molekülwolken
 - Kernfusion
 - Frühe Entwicklung
 - Planetenentstehung und Exoplaneten


Dunkelnebel Barnard 7

Molekülwolke B68

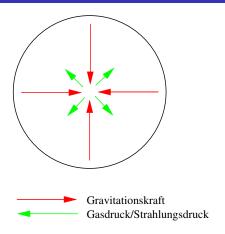
Molekülwolke B68 im Optischen [ESO; VLT/FORS1]

Molekülwolke B68 im Infraroten [ESO; VLT/FORS1 + NTT/SOFI]

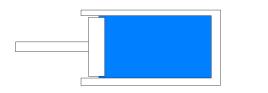
Sternentstehung I

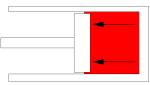
Sterne entstehen in Gruppen aus interstellaren Molekülwolken

Riesenmolekülwolken


- Ausdehnung: 20 600 Lichtjahre
- Dichte H_2 : $n = 100-1000 \frac{\text{Teilchen}}{\text{cm}^3}$
- Masse: $10^4 10^6 M_{\odot}$
- Temperatur: 10-40 K
- Zusammensetzung: Wasserstoff (H_2) , Kohlemonoxid (CO), Alkohole, andere komplexe organische Moleküle

Molekülwolken kollabieren durch äußere Störungen (z.B. nahe Supernovaexplosion, Kollision zweier Wolken)


Antennengalaxien [Nasa/ESA/Hubble Heritage Team]


Sternentstehung II

Bedingung für Kollaps: Gravitationskraft stärker als Gasdruck
 ⇒ Jeans-Kriterium: Bei gegebener Masse muss die Wolke einen bestimmten Radius (Jeans-Radius) unterschreiten, um kollabieren zu können.

Sternentstehung III

- ullet Gas wird verdichtet \Rightarrow Druck und Temperatur steigen
- Drehimpulserhaltung: Fragmentierung der Wolke
- ullet Entstehung eines ersten hydrostatischen Kerns mit ca 0,01 M_{\odot} (d.h. Gravitationskraft wird durch Gasdruck kompensiert)

Sternentstehung IV

- \bullet Kern wird durch einfallende Materie bis mit $\mathcal{T}\gtrsim 2000\,\mathrm{K}$ weiter aufgeheizt
- die Wasserstoffmoleküle werden dissoziiert (in ihre Atome aufgelöst) ⇒ Kern kollabiert weiter
- Entstehung eines zweiten hydrostatischen Kerns mit $T \approx 10.000\,\mathrm{K}$
- Hülle stürzt nahezu ungebremst auf den Kern ein
- Kinetische Energie wird in Leuchtkraft umgewandelt
 ⇒ weitere Erhitzung

Nach Erreichen von ca. 1 Mio K: Kernfusion

Modellrechnung zur Sternentstehung:

http://www.astro.ex.ac.uk/people/mbate/Cluster/cluster3d.html

Sternentstehung V

Weitere Entwicklung abhängig von der Masse M der Verdichtung

- $M \lesssim 0.08 \, M_{\odot}$: Temperatur $< 1 \, \text{Mio K} \Rightarrow \text{keine Kernfusion, "Brauner Zwerg"}$
- $M \gtrsim 0.08 \, M_{\odot}$: Temperatur $> 1 \, \text{Mio K} \Rightarrow \text{Kernfusion setzt ein, nachdem nahezu}$ alles Gas auf den Stern eingefallen ist
- $M\gtrsim 3\,M_\odot$: Temperatur $>1\,\mathrm{Mio}\,\mathrm{K}\Rightarrow\mathrm{Kernfusion}$ setzt schon ein, während noch Materie auf den Stern einfällt, ein großer Anteil der ursprünglichen Masse wird durch den Strahlungsdruck wieder abgestoßen

Energieerzeugung in Sternen

Früher vermutete man, dass Sterne Energie erzeugen, indem sie kontrahieren und sich dabei erhitzen. Problem: Zeitskala zu kurz.

Lösung: Kernfusion

Wasserstoffkerne verschmelzen zu Heliumkernen

$$4\times^1_1\mathsf{H}\to\ ^4_2\mathsf{He}$$

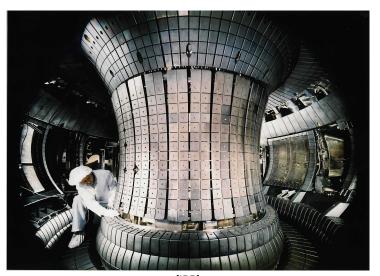
Der Heliumkern hat 0,7 % weniger Masse als die 4 Wasserstoffkerne

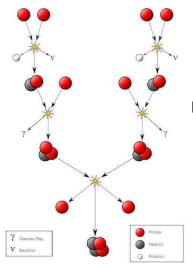
Energieausbeute

Einstein: Masse und Energie sind äquivalent

$$E = mc^2$$

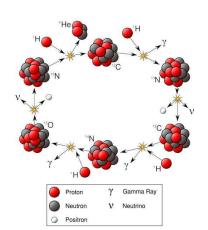
Vakuumlichtgeschwindigkeit $c \approx 300.000 \, \frac{\mathrm{km}}{\mathrm{s}}$


- 1 g Materie entspricht 25 GWh Energie
- Da bei der Kernfusion 0,7 % der Masse in Energie umgewandelt werden, werden bei der Fusion von 1 g Wasserstoff 175 MWh Energie freigesetzt.


[Pro Aurum / E.ON Kernkraft GmbH]

Fusionsreaktor ASDEX Upgrade

[IPP]


Proton-Proton-Zyklus

Dominierender Prozess in der Sonne

$$\epsilon_{
m pp} \propto T^5$$

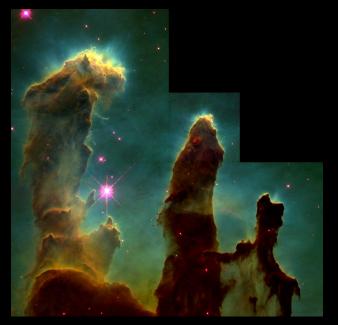
Bethe-Weizsäcker-Zyklus

- Weitere Bezeichnung: CNO-Zyklus
- Dominierender Prozess bei Sternen mit hohen Kerntemperaturen

$$\epsilon_{\mathsf{CNO}} \propto T^{17}$$

Junger Stern

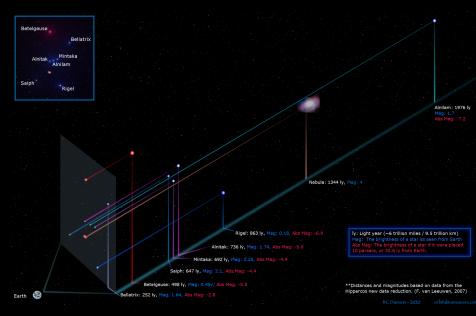
- Stern aufgrund der umgebenden Gaswolke zunächst unsichtbar
- Junger, heißer Stern hat intensiven Sternwind und Strahlungsdruck
- umgebende Gaswolke wird durch UV-Strahlung und Sternenwind aufgelöst
- Stern wird sichtbar



Schematische Darstellung / LDN 1471 in Perseus-Molekülwolke [STScI / Hubble, NASA, ESA; Judy Schmidt]

HST-Aufnahme des Adlernebels M16 [NASA]

"Pillars of creation" in M16, in den Spitzen der Gassäulen befinden sich junge Sterne [NASA] 4□ > 4□ > 4 글 > 4 글 >


NGC 7822 [Hartmuth Kintzel (NAA)]

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee

STScI-PRC09-32a

Orion-Molekülwolkenkomplex [Wikimedia/Rogelio Bernal Andreo]

HST-Aufnahme des Orionnebels M42 [NASA]

Ausschnitt des Orionnebels M42 [NASA]

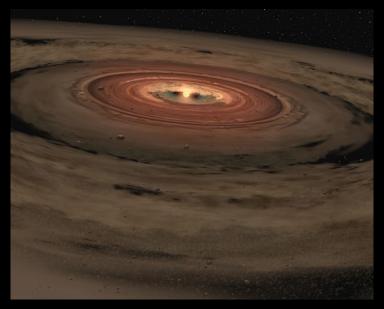
Video zum Orionnebel:

https://www.youtube.com/watch?v=cg2r5fzS7aE

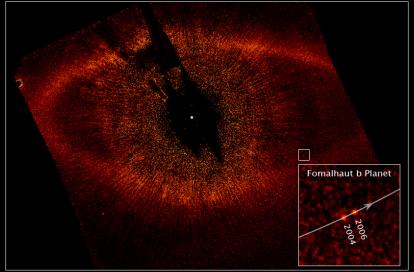
Sternentstehung im Orionnebel (Modellrechnung) [VisLab SDSC]

Der offene Sternhaufen M45 (Plejaden) [R. Sperber (NAA)]

Der offene Sternhaufen M45 (Plejaden) [Hartmuth Kintzel (NAA)]


Der offene Sternhaufen NGC 3603 [NASA, ESA, and the Hubble Heritage]

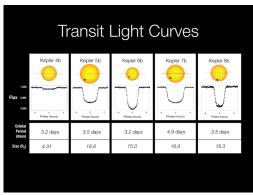
Protoplanetare Scheibe im Orionnebel [C.R. O'Dell/Rice University, and NASA]


Protoplanetare Scheiben im Orionnebel [NASA/ESA and L. Ricci (ESO)]

Planeten entstehen aus Staubscheiben um Sterne (Computergraphik) [NASA/JPL]

Fomalhaut System

Hubble Space Telescope • ACS/HRC



NASA, ESA, and P. Kalas (University of California, Berkeley)

STScI-PRC08-39a

Staubscheibe und Planet um Fomalhaut, Entfernung: $25\,\text{Lichtjahre}$ [NASA/ESA]

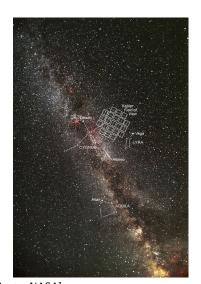
Extrasolare Planeten: Nachweis

[Bill Borucki, Jan 2010 AAS Presentation]

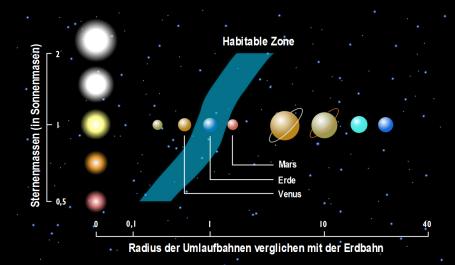
- Direkte Abbildung
- Radialgeschwindigkeitsmethode
- Transitmethode
- Eigenbewegung
- Gravitationslinseneffekt
- Pulsar Timing

 $http://astro.unl.edu/naap/esp/animations/radialVelocitySimulator.html \\ http://astro.unl.edu/naap/esp/animations/transitSimulator.html$

Extrasolare Planeten

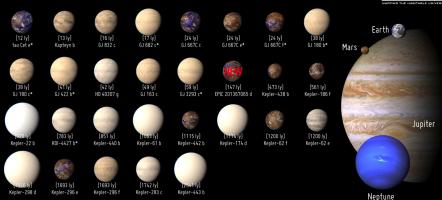

5785 Exoplaneten (Stand 3. November 2024)

[https://exoplanets.nasa.gov/discovery/discoveries-dashboard/]


Weltraumteleskop Kepler

[Carter Roberts, NASA]

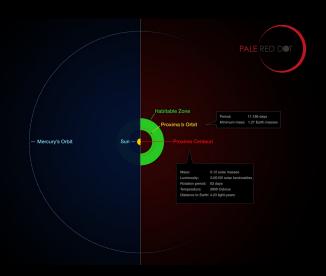
Habitable Zone



 $Simulation: \ http://astro.unl.edu/naap/habitablezones/animations/stellar Habitable Zone.html \\$

Potentially Habitable Exoplanets

Ranked by Distance from Earth (light years)



Artistic representations. Earth, Mars, Jupiter, and Neptune for scale. Distance is between brackets. Planet candidates indicated with asterisks.

CREDIT: PHL @ UPR Arecibo (phl.upr.edu) January 16, 2015

Proxima Centauri

 $[\mathsf{ESO}/\mathsf{M}.\ \mathsf{Kornmesser}/\mathsf{G}.\ \mathsf{Coleman}]$

Nächste Woche:

Sternaufbau, Sternentwicklung, Endstadien